Progress of Photonic-Crystal Surface-Emitting Lasers: A Paradigm Shift in LiDAR Application

Yu-Heng Hong, Wen-Chien Miao, Wen-Cheng Hsu, Kuo-Bin Hong, Chun-Liang Lin, Ching Lin, Shih-Chen Chen, and Hao-Chung Kuo

Crystals , 12(6), 800 (2022) — Published in June 2022

ABSTRACT

Nowadays, the flurry of autonomous vehicles is in full swing regarding light detection and ranging (LiDAR) and depth perception. For such visual perception, light plays an important role. We human beings recognize and distinguish surrounding details when the eye focuses light on the retina. For the LiDAR system, pulsed lasers are employed to measure the relevant range. Thus, appropriate light sources with high performance are in urgent demand. Auspiciously, a revolutionary semiconductor laser technology, namely the photonic-crystal surface-emitting laser (PCSEL), emerges over the past two decades. PCSEL exhibits not only a symmetric beam profile with narrow beam divergence but also a high-power operation with controllability. Therefore, it may be the holy grail for an ultracompact time-of-flight (ToF) LiDAR system. Hereupon, comprehensive analyses of PCSEL-relevant scientific publications and patent documents are conducted. We thereby review the development progress of PCSEL technology. Moreover, a systematic simulation is performed, providing real-time visualization of relevant point clouds with different beam divergence. PCSEL technology with unprecedented merits indeed turns a new leaf and a paradigm shift in LiDAR application is ongoing. It is believed that a lens-free and adjustment-free ultracompact apparatus in simplicity can be expected.

回到頂端