量子計算所

From Generalization of Bacon-Shor Codes to High Performance Quantum LDPC Codes

Jihao Fan, Jun Li, Ya Wang, Yonghui Li, Min-Hsiu Hsieh, and Jiangfeng Du
[arxiv]

Abstract

We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concatenation scheme allows us to derive quantum LDPC codes of distance Ω(N2/3/ log log N) which can improve Hastings’s recent result [arXiv:2102.10030] by a polylogarithmic factor. Moreover, assisted by the Evra-Kaufman-Z´emor distance balancing construction, our concatenation scheme can yield quantum LDPC codes
with non-vanishing code rates and better minimum distance upper bound than the hypergraph product quantum LDPC codes. Finally, we derive a family of fast encodable and decodable quantum concatenated codes with parameters Q = [[N, Ω(√N), Ω(√N)]] and they also belong to the Bacon-Shor codes. We show that Q can be encoded very efficiently by circuits of size O(N) and depth O(√N), and can correct any adversarial error of weight up to half the minimum distance bound in O(√N) time. To the best of our knowledge, they are the most powerful quantum codes for correcting so many adversarial errors in sublinear time by far.

回到頂端